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FREQUENCY-RESPONSE IDENTIFICATION OF XV-15 TILT-ROTOR AIRCRAFT DYNAMICS
Mark B, Tischler, Ph.D.

Stanford University, 1987

The timely design and development of the next generation of tilt-
rotor aircraft (JVX) depend heavily on tha(}ln-dcpth understanding of
existing XV-15 dynamics and the availability of fully validated simula-
tion models. \Previoua studies have considered aircraft and simulation
trim charactet}istics, but analyses of basic flight vehicle dynamics have
been limited qualitative pilot evaluations. The present study has
the t‘ollouiugC;b,)eq::t1ves;L C+ Y Present :+udy are:

1. Documentation and evaluation of XV-15 bare-airframe dynamics

2. Comparison of aircraft and simulation responses - ,, ,

3. Development of a validated transfer-function description of the

XV-15 needed for future studies

A nonparametric frequency-response approach is used which does not
depend on assumed model order or structure. Transfer-function represen-
tations arecSubsequentlyp derived which fit the frequency responses in
the bandwidth of greatest concern for piloted handling-qualities and
oontrol-system applications., —— - 4

This study involved the planning and execution 6?91;!1(’. tests on
the XV-15 aircraft and piloted-simulation for four flight oonditions

Crtve pho cra® Oaa exer uded.

from hover to oruuo[ Improved test techniques and pilot-training
procedures were devised. Amlyuul lonuuu tools;were developed (or

adapted) whiochsallow the identifioation of high-resolution spectral
responses and the derivation and validstion of multi-input/multi-output

iv




transfer-function models. These techniques were applied in an extensive
evaluation of the open-loop flight dynamics of the XV-15 aircraft and
simulation mathematical models. Deficiencies in the mathematical models
were exposed and documented. Finally, a new, fully validated transfer-
function model was derived f ; the hover and cruise flight conditions.
The methods developed in this study have subsequently been applied in a
number of other rlight-test/progra-s and have been included in the U.S.
Army's updated helicopter hindling-qualities specification.
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Chapter 1
INTRODUCTION

1.1 Background and Objectives
The tilt-rotor concept combines the hovering advantages of the

helicopter with the cruise advantages of a fixed-wing aircraft.
Rotor/engine nacelles at the wing tips are rotated to the vertical
position for hovering flight and to the horizontal position for cruising
flight. The XV-15 research aircraft (Fig. 1.1) was jointly developed by
the U.S. Army, NASA, and the Navy to demonstrate tilt-rotor technol-
ogy. A key objective of this project was to achieve good piloted
handling-qualities characteristics in hovering flight by using an
advanced stability and control augmentation system (SCAS). This objec-
tive was emphasized because of serious handling-qualities deficiencies
in hovering flight which were encountered with the original tilt-rotor
demonstrator--the XV-3 (Ref. 1). Two XV-15 aircraft were developed
under contract to Bell Helicopter Company and deliveréd to Ames Research
Center (ARC) in 1980. One aircraft (N703) was retained at Ames for
research and development testing; the other (N702) was leased back to
the contractor for operational testing.

Comprehensive real-time and nonreal-time simulation codes (Refs. 2,
3) were developed to support the design and testing of the XV-15,
Moving-base simulation facilities at ARC were extensively used for pilot
training before the first flight tests, and subsequently for advanced
automatic flight control system (AFCS) development. The XV-15 simula-

tion code covers the entire operating envelope, with a full nonlinear




Fig. 1.1. The XV-15 Tilt-Rotor Aircraft. (a) Hover Configuration;

(b) Cruise Configuration.

representation of the aircraft. Wing/body/tail aerodynamics are deter-
mined from extensive look-up tables of full-scale wind-tunnel data
obtained in the NASA U40- by 80-Foot Wind Tunnel facility. Rotor cal-
culations assume quasi-steady flapping and are based on modified Bailey
equations with uniform rotor inflow. The aerodynamic interactions

between the two rotors, and the rotor interference with the other




aircraft elements are modeled in detail. Also modeled are numerous sub-
system dynamics such as the engine drive train and governor. The XV-15
mathematical model was the most complex ever developed to that time for
real-time piloted simulation at ARC (Ref, 4). The nonreal-time version
is routinely used to support control-system development and flight-test
planning. The XV-15 simulation mathematical models have been exten-
sively correlated with static trim and performance flight data; the
comparison is generally excellent (Ref. 5). However, dynamic checks
have been very limited (Ref. 4), with most of the validation in this
area centered on pilot subjective comparison of the aircraft and
motion-based simulator response.

The author, as a staff member of an Army research team responsible
for simulation technology, started in 1983 to conduct a comprehensive
study to validate the open-loop dynamic response fidelity of the
piloted-simulation mathematical model. An in-depth understanding of
XV-15 dynamics and the availability of fully validated simulation models
were considered important for the timely design and development of the
Joint Services Operational Tilt-Rotor Aircraft--the JVX, now designated
the V-22., To fulfill these needs, the study was initiated with the
following three major objectives:

1. Document the open-loop dynamic characteristics of the XV-15
aircraft from flight tests for several operating conditions including
hover

2. Compare aircraft and simulation response characteristies to
identify problem areas in the mathematical modeling

3. Develop a validated transfer-function model description of the

XV-15 needed for future studies




Emphasis was initially placed on the hover flight condition, where
unstable open-loop dynamics lead to the most critical handling-qualities
problems.

A key consideration in planning this study was the selection of an

appropriate dynamics identification method.

1.2 Dynamics Identification Methods

Dynamics identification methods generally fall into two cate-
gories: frequency domain and time domain. Each approach has its inher-
ent strengths and weaknesses which make it best suited for particular
applications.

In time-domain (maximum-likelihood) identification (Fig. 1.2), the

aircraft dynamics are modeled by a set of differential equations
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Fig. 1.2. Time-Domain Identification Method.




describing the external forces and moments in terms of state and control
variables. The unknown coefficients in the equations are the stability
derivatives, which are identified by least-squares fitting of the mea-
sured time-responses (output-error method). Such an approach allows a
direct comparison of stability derivatives obtained in the wind tunnel
and those of the actual flight vehicle. Transfer functions and fre-
quency responses may be calculated from the state-space model. A key
aspect of time-domain identification is that an a priori model formula-
tion must be assumed. This important step involves consideration of
model structure, order, and important nonlinearities. Such information
is generally not well known on a new vehicle such as the XV-15, and
incorrect model formulation can bias the parameter estimates (Ref. 6).
Also, models which provide a good fit in the time-domain do not neces-
sarily yield accurate transfer functions, since time-domain identifica-
tion techniques weight their results more heavily at low frequency where
most of the data points are concentrated.

The frequency-domain identification approach shown in Fig. 1.3 uses

spectral analysis methods to extract the frequency responses between
selected input and output pairs. The identification results are usually
presented in Bode-plot format, that is, log-magnitude and phase of the
input-to-output versus log-frequency. These identification results are
nonparametric because no model structure is assumed. As such, they are
useful for flight-control system design and pilot-in-the-loop handling-
qualities studies. Frequency responses obtained from real-time and
nonreal-time simulations can be compared directly with the flight data
to expose limitations and discrepancies in the simulator models. The

fact that this comparison can be made initally without an a priori
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Fig. 1.3. Frequency-Response Identification Method.

assumption of model structure or order is especially important for

verifying mathematical models of new aircraft configurations.

model structure and parametric values are required, they may be obtained

by fitting the frequency-responses with transfer-function models to

extract modal characteristics. Examples of this application are the

testing of handling-qualities specifications given in lower-order equiv-

alent system terms, and the examination of transfer function-based

control system designs. Since this fitting procedure is completed after

When the



the frequency response is extracted, the order of the tramsfer fumetiom
can be selected to avoid an overparameterised model. Multi-imput/mmiti-
output (MIMD) frequency-response methods are suitable for estracting a
transfer matrix which includes the important coupling effests. Fimally,
the extracted models are driven with the flight data to verify the
time-domain characteristics. Models identified by fregquency-domain
techniques are often most acourate at mid- and high-frequency (initial
time-history transients), whioch is the region of greatest oconcern to the
pilot. The low-frequency and steady-state response prediction of the
extracted models is generally not as good as in the time-domain identi-
fication approach.

Since the oompletion of the preceding objectives depends on obtain-
ing an acourate characterization of the input-to-cutput transient dymam-
ics and piloted handling-qualities of a new aircraft oconfiguratiom,
rather than on obtaining a stability derivative model (necessary for
example to validate the wind-tunnel data base), the frequency-domain

approach is the natural ohoice.

1.3 AH in F -
Identifioation

The earliest reported research in fregquency-regponse ideatification
of aircraft dynamica from flight-test data was conducted at the Cermell
Aeronsutiocal Laboratory beginning in 1985 (summarised in Ref. 7).
Steady-state sine-wave inputs were used to (laboricusly) estraet the
frequency responses of the North American 3-23J (fised-wing) aireraft.
Then, lower-order transfer-fumnction models were derived frem a least-

squares fit of the frequensy-responses (displayed on a polar pist).
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Pourier trensfere msthods were subsequently develeped (Refs. 7, 8) te
allew frequensy-response identification fram (shorter-duretion)
diserete-aansuver data, such as that obtained from step snd pulse
inguts. These technigues were applied in flight research activities at
the Air Foroe Flight Test Center (Edwards Air Foroe Bese) during the
19508 (see Ref. 9 for a list of references). As pointed out in Ref. 9,
all of these early efforts \n frequency-response idemtification suffered
frem the lack of large-scale computing power. The develogment of the
fast Fourier transfora (PFT) algorithms in the 1960e, and the signifi-
cantly improved computing capabilities of this period led to mueh
greater interest and sucoess in frequency-reaponse idemtification.

A comprehensive facility